Riesz transforms for the Dunkl Ornstein–Uhlenbeck operator
نویسندگان
چکیده
منابع مشابه
Riesz Transform and Riesz Potentials for Dunkl Transform
Analogous of Riesz potentials and Riesz transforms are defined and studied for the Dunkl transform associated with a family of weighted functions that are invariant under a reflection group. The L boundedness of these operators is established in certain cases.
متن کاملIndefinite higher Riesz transforms
Stein’s higher Riesz transforms are translation invariant operators on L2(Rn) built from multipliers whose restrictions to the unit sphere are eigenfunctions of the Laplace–Beltrami operators. In this article, generalizing Stein’s higher Riesz transforms, we construct a family of translation invariant operators by using discrete series representations for hyperboloids associated to the indefini...
متن کاملThe Operator Fejér-Riesz Theorem
The Fejér-Riesz theorem has inspired numerous generalizations in one and several variables, and for matrixand operator-valued functions. This paper is a survey of some old and recent topics that center around Rosenblum’s operator generalization of the classical Fejér-Riesz theorem. Mathematics Subject Classification (2000). Primary 47A68; Secondary 60G25, 47A56, 47B35, 42A05, 32A70, 30E99.
متن کاملPrincipal Values for Riesz Transforms and Rectifiability
Let E ⊂ R with H(E) < ∞, where H stands for the n-dimensional Hausdorff measure. In this paper we prove that E is n-rectifiable if and only if the limit
متن کاملHigher order Riesz transforms for Hermite expansions
In this paper, we consider the Riesz transform of higher order associated with the harmonic oscillator [Formula: see text], where Δ is the Laplacian on [Formula: see text]. Moreover, the boundedness of Riesz transforms of higher order associated with Hermite functions on the Hardy space is proved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Colloquium Mathematicum
سال: 2010
ISSN: 0010-1354,1730-6302
DOI: 10.4064/cm118-2-19